NDSU NORTH DAKOTA STATE UNIVERSITY

STUDENT FOCUSED • LAND GRANT • RESEARCH UNIVERSITY

The Economics of Biomass Combined Heat & Power

> David Ripplinger Bioenergy Specialist NDSU Extension

Minnesota Renewable Energy Roundtable UNORTH DAKOTA STATE UNIVERSITY July 17, 2015

CHP Basics

Generating electric power and useful energy from a single fuel source

35% Efficient

70% Efficient

80% Efficient

Minnesota CHP Facility Count

Source: ICF CHP Database

CHP Benefits: Economic

Lower cost

STATE L

Less price variability

Source: Energy Information Administration

CHP Benefits: Efficiency

Recover otherwise wasted thermal energy

Takes place closer to energy consumerlower losses to transmission & distribution

NDSU NORTH DAKOTA STATE UNIVERSITY

CHP Benefits: Environmental

More efficient energy use Lower carbon fuels

→Lower greenhouse gas emissions!

CHP Benefits: Resiliency

For those businesses whose operations depend on reliable power

-Adobe Biogas Fuel Cells

Why Biomass?

Energy cost savings

Greenhouse gas reductions

Local economic development

Reduced supply risk

When does CHP work best?

High electricity prices Deregulated electricity markets Firms with -Regular operations -Regular thermal loads -Existing central plant -Central plant equipment replacement or major construction planned -Reliability concerns

-Environment NDSU NORTH DAKOTA STATE UNIVERSITY

Determining Feasibility: The Spark Spread

Spark Spread

You may have a CHP project if

the spark spread is positive

...we didn't account for capital costs and O&M.

Adding the Cost of Capital

Assumptions Electric Capacity (MW) 3 Annual Operating Hours 8,000 Capital Cost \$18,000,000 Cost of Capital 8% Calculations Cost per kW \$6,000 Cost per kWh \$.06

NDSU NORTH DAK

+ O&M from \$.02 to \$.10+/kWh

Sensitivity Analysis

Prices: electricity, boiler fuel, CHP fuel, capital, O&M

Technology: boiler efficiency, power to heat ratio, CHP heat rate

Project scale and scope

Alternative fuels

NDSU NORTH DAKOTA STATE UNIVERSITY

What about risk?

Price risk Supply risk Policy risk Operating risk

What about emissions?

Calculate the spark spread using carbon instead of financial accounting

Price using a carbon price (eg \$20 MT/CO₂e)

Green Spark Spread

NDSU NORTH DAKOTA STATE UNIVERSITY

Someone needs to get EPA better biomass carbon emissions values for their CHP emissions calculator ASAP!

CHP Policy

Federal

- Tax Incentives
- Financing (§ 1703)
- Boiler MACT
- § 111(d)

State

- Next Generation
 Energy Act (MN)
- RPS
- CIP
- Net metering
- Standby
- Incentives/financing

Summary

Know the basics Calculate the spark Follow policy developments

David Ripplinger Bioenergy Specialist

david.ripplinger@ndsu.edu 701.231.5265

