Biomass Heating Feasibility Guide

Minnesota Renewable Energy Roundtable – Bemidji, MN July 24, 2012

Project Partners: Southern MN
Initiative Foundation, and SW Clean
Energy Resource Team

Biomass Heating Feasibility Guide

Prepared and Presented by:
Daniel Lepp Friesen
DLF Consulting
Winnipeg, Manitoba

Research Summary

- Focus: Greenhouses and Turkey Barns
- Biomass resources agricultural and forestry
- Biomass fuel suppliers in Minnesota
- Biomass fuel handling examples
- Biomass heating system suppliers and products
- Biomass heating system components (Balance of System)
- Biomass heating system costs and financial implications
- Financial sensitivity analysis (energy prices)

Analysis

Ag Biomass

Risk testing

Heating System

Forestry

Biomass Prices Biomass

Greenhouses Heating System

Types

Underground

Pipes

Sizes

Biomass Forms

Water heat

Turkey Barns

Air Heat

Financial

Variables

System

Components

(Barns)

Inflation, Interest rates

	Facility: Greenhouse @ 22K ft2 or Turkey Barn @ 50K ft2									
	Combustor Size: 2 MMBtu/h									
	Fuel Form	Pellet	Pellet	Woodchip	Bale	Bulk				
			Outdoor Water	Outdoor Water						
	Combustor	Indoor Air Heater	Heater	Heater	Indoor Water Heater	Indoor Water Heater				
						Woodchips / Hogfuel				
						/ Biomass (loose				
1	Fuel Type	Wood Pellet	Wood Pellet	Woodchip	Baled Straw / Stover	stover)				
2	\$ / Ton	\$ 175	\$ 175	\$ 75	\$ 60	\$ 60				
3	Moisture	6%	6%	30%	15%	15 - 45%				
4	System Type	Hot Air	Hot Water	Hot Water	Hot Water	Hot Water				
5	Combustor Cost	\$ 120,000	\$ 165,000	\$ 165,000	\$ 165,000	\$ 165,000				
	Balance of System									
6	Cost	\$ 120,000	\$ 105,000	\$ 105,000	\$ 320,000	\$ 350,000				
7	Initial Costs	\$ 258,000	\$ 290,000	\$ 305,000	\$ 532,000	\$ 564,000				
8	Annual Costs	\$ 47,000	\$ 47,000	\$ 25,000	\$ 28,000	\$ 27,000				
9	Annual Savings	\$ 84,000	\$ 84,000	\$ 84,000	\$ 84,000	\$ 84,000				
10	Annual Debt	\$ 31,000	\$ 35,000	\$ 32,000	\$ 55,000	\$ 57,000				
	Pre-tax Internal Rate									
11	of Return (equity)	17.1%	13.0%	42.0%	11.1%	11.9%				
12	Net Present Value	\$ 95,000	\$ 67,000	\$ 280,000	\$ 91,000	\$ 112,000				
13	Simple Payback (Yr)	8.2	9.1	5.2	9.6	9.3				

NOTES

- 1 The fuels listed cover the gamut of feedstocks reviewed in the report
- 2 Prices vary, however, those listed are based on supplier data from Minnesota in response to the request for proposal
- 3 Moisture is a key factor of any biomass fuel impacting storage, handling and boiler efficiency.
- 4 Heat generated can be used in a number of ways, e.g. Air heat can be converted, with efficiency losses to water heat, and vice versa
- 5 Costs based on an aggregated review of combustor information provided in response to the request for proposal
- 6 Costs cover what the rest of the system requires e.g. Pumps, controls, pipes, concrete, buildings etc.
- 7 Total of the lines 5 and 6 in addition to other expenses (such as 5% contingency cost). IMPORTANT: the bulk and bale systems require manual
- 8 Includes fuel, operations and maintenance. For transportation add \$2-3 per mile.
- 9 Calculated based on what will be saved by NOT using propane @ \$1.50 per gallon
- 10 Based on 75% of the project financed @ 6% over 10 years
- 11 Based on 2% inflation, 2% cost of fuel increase, 6% discount rate, 15 year project life
- 12 Present value of future discounted cash flows if NPV is positive, the investment is worth examining
- 13 Amount of time for the project to pay for itself based on savings paying off the investment

Biomass

Biomass – this study

- Forestry: sawdust, woodchips, hogfuel, trimmings, cut logs and other industrial wood processing by-products, willows and other fast growing trees.
- Agriculture: crop residues, industrial residues, poultry litter, miscanthus and other grass crops.
- Forms: pellet, puck, cube, bale, bulk

Minnesota Biomass

Estimated Biomass Sources in Minnesota (total = ~25 million tons)

Minnesota Biomass

Availability of Biomass for Energy Production in Minnesota, Based on ONRL 1999 Study*

Resource	Quantity Available (000 dry tons/year)			Quantity Available <u>Without Ag. Residues</u> (000 dry tons/year)		
	<\$30/t	<\$40/t	<\$50/t	<\$30/t	<\$40/t	<\$50/t
Forest residues	468	682	875	468	682	875
Mill residues (wd)	71	916	1,121	71	916	1,121
Ag. residues	0	11,936	11,936			
Energy crop pot.	0	427	5,783	0	427	5,783
Urban wd waste	1,533	1,533	1,533	1,533	1,533	1,533
Total	2,072	15,494	21,248	2,072	3,558	9,312

*Walsh et al. 1999.

	Average	Unit	Moisture	Sources		Average	Unit	Moisture	Sources
	Fossil Fuels					Ag Crop Waste			
Fuel Oil	18,015	Btu/lb	-	2	Straw Chopped	6,234	Btu/lb	15	2
Coal	10,749	Btu/lb	-	2	Straw Big Bales	6,234	Btu/lb	15	2
Oil	18,355	Btu/lb	-	1	Grass Pellets	6,879	Btu/lb	8	10,11
Natural Gas	100,000	Btu/therm	-	1	Corn stalks/stover	7,777	Btu/lb	-	12,13,17
Propane	91,600	Btu/gal	-	1	Sugarcane bagasse	7,900	Btu/lb	-	12,13,17
Lignite coal	6,578	Btu/lb	-	1	Wheat straw	7,556	Btu/lb	-	12,13,17
	Wood				Hulls, shells, pruning	7,825	Btu/lb	-	13,14
Pellets	7,524	Btu/lb	8	2	Fruit pits	9,475	Btu/lb	-	13,14
Pile Wood	4,084	Btu/lb	-	2		Herbaceo	us Crops		
Hardwood wood	8,469	Btu/lb	-	14,18	Miscanthus	8,100	Btu/lb	-	17
Softwood wood	8,560	Btu/lb	-	12,13,14,15,16,17	Switchgrass	7,994	Btu/lb	-	12,13,17
Softwood Chips	4,084	Btu/lb	50	2	Switchgrass dry	7,750	Btu/lb	-	9
Softwood Chips	6,535	Btu/lb	20	2	Other grasses	7,901	Btu/lb	-	17
Forest S. Chips	5,718	Btu/lb	30	2	Bamboo	8,330	Btu/lb	-	17
Forest H. Chips	5,718	Btu/lb	30	2		Woody Cr	ops		
Sawdust Dry	8,000	Btu/lb	0	3,4	Black locust	8,496	Btu/lb	-	12,17
Sawdust Green	4,500	Btu/lb	50	5	Eucalyptus	8,303	Btu/lb	-	12,13,17
	Animal Was	te			Hybrid poplar	8,337	Btu/lb	-	12,14,17
Manure	8,500	Btu/lb	0	6	Willow	8,240	Btu/lb	-	13,14,17
Manure	4,200	Btu/lb	50	6		Urban Residues			
Poultry Litter	5,000	Btu/lb	25	7,8	MSW	7,093	Btu/lb	-	13,17
					Newspaper	9,014	Btu/lb	-	13,17
					Corrugated paper	7,684	Btu/lb	-	13,17
					Waxed cartons	11,732	Btu/lb	-	13

Biomass

Greenhouses

Greenhouses

	Large	Medium	Medium	Small
Total Greenhouse Area (ft2)	65,000 - 80,000	30,000 - 40,000	30,000 - 40,000	1,000 - 3,000
Fuel Production	On-site	Purchased	On-site	Purchased
Heat Storage	Yes	No	No	Yes
		Floor Heating,	Fin/tube, under plant	
	Fin/tube, under plant	convection direct	beds, water/air fan	
Type of Heating System	beds	fire unit	convection	In-floor
Full/Part year Operation	Full Year	Part Year	Full Year	Part year
		Natural Gas /		
Heating Fuel (see note)	Biomass Pellets	Propane	Straw bales	Biomass Pellet
Unit	Ton	Therm / Gal	Ton	Ton
Cost / Unit	\$150 - \$180	\$0.65 / \$1.50	\$80 - \$100	\$150 - \$200
Heating Cost / yr	\$50,000 - \$65,000	\$30,000 / \$100,000	\$35,000 - \$45,000	\$3,000 - \$5,000
Cost / ft2	\$0.75 - \$0.85	\$0.65 / \$3.00	\$1.10 - \$1.20	\$1.70 - \$2.00
MMBtu / yr	8,000 - 9,000	3,500 / 8,000	7,500 - 8,500	800 - 1,200
MMBtu / hr Heating Capacity	4 - 6	3 - 5	3 - 5	.4 - 1

Note: Heating Fuels listed do not include solar contribution.

Turkey Barns

Turkey Barns

	Large	Medium	Small	
Barn Size (sf)	175,000 - 225,000	75,000 - 100,000	30,000 - 50,000	
No. Barns	4 - 5	3 - 4	1 - 2	
Ave Size ea (sf)	45,000 - 55,000	20,000 - 25,000	20,000 - 25,000	
No. Turkeys per barn	25,000 - 30,000	20,000 - 25,000	20,000 - 25,000	
	Brooders, Hens,			
Operation	Toms	Brooders, Hens	Brooders	
Heating Fuel	Propane	Propane	Natural Gas	
Unit	Gallon	Gallon	Therm	
Cost/Unit	\$ 1.50	\$ 1.75	\$ 0.65	
Heating Cost/yr	\$150,000 - 175,000	\$60,000 - 85,000	\$25,000 - 35,000	
Cost / ft2	\$0.75 - \$0.85	\$0.80 - \$0.95	\$0.70 - \$0.80	
MMBtu / yr 8,000 - 8,500		4,000 - 5,500	1,500 - 3,000	
MMBtu/hr Heating				
Capacity	24 - 28	6 - 10	2 - 4	

Biomass Use

Biomass Heating Fuels	Type of Feedstock	Processing	Handling Equip	Storage	Feed mechanism to Combustor
Pelletted or	Forestry and Crop				
densified	residues, Industrial	Grinding,	Auger,		
biomass	byproducts	Densification	Conveyor	Bin / Silo	Auger, Conveyor
				Enclosed	
Bulk biomass	Wood chips, Flax shives,			barn/shed with	Walking floor,
feedstock	Sunflower Hulls, Other		Loader	loader access	Auger
Baled Feedstock	Corn Stover, Wheat	Bale Grinder	Fork lift/crane	Barn/Shed	Walking floor,
	Straw, Bean Straw,	/ Slicer			Bale conveyor
	Canola Straw, Grasses				

Biomass Suppliers

Fuel Supplier	Location	Type of Fuel	Price per ton
Even Creen Energy	Minnoanolis	Mo a dahina	Sold only to St.
Ever-Green Energy	Minneapolis	Woodchips	Paul Dist Energy
MAADTII	Marathon	Wood Pellets	\$135 - 145
MARTH	Iviaratiion	Debarked woodchips	\$55 - 65
Great Lakes Renewable Energy	Hayward	Wood Pellets	\$145
Pork and Plant	Altura	Biomass Pellets	\$150
Hedstrom Lumber	Grand Marais	Woodchips	\$50
neustroin Lumber	Grand Marais	Hogfuel	\$20
		Pellets	\$165
Matter O Costh	Da an Birran	Woodchips - wet	\$30-40
Kotter & Smith	Deer River	Woodchips - dry	\$50
		Hogfuel - wet	\$25
Farmer supplied		Corn Stover bales	\$70-80

Biomass Processing

Biomass Heating Technologies

- 1. Screw Auger
- 2. Combustion Chamber
- 3. Post-combustion Chamber
- 4. Heat Exchanger
- 5. Flue Gas Exit
- 6. Ash Extraction

Biomass Heating Unit Response

Company Name	Location	Contact	Combustor Size
Heartland Energy Systems	Minnesota	David Fiebelkorn	500k
LEI Products	Kentucky	Rick Jones	500k
Itasca Power Co	Minnesota	Dean Sedgewick	Custom; 5M
AFAB-USA: VanerTekno,			
OsbyParca	Sweden - US Dist	Dave McNertney	500k - 1M
Marth EarthWise / Wood	Wisconsin /		
Master	Minnesota	Danny Gagner	500k - 5M
Blue Flame	Manitoba	Eugene Gala	Custom: 500k - 5M
Biomass Briquette Systems:			
LINKA	Denmark - US Dist	Dave Schmucker	500k - 5M

Biomass Heating Units

Combustor Unit Size	0 to 500kBtu	500kBtu to 2MMBtu	2MMBtu to 5MMBtu
# Units surveyed	9	7	7
	Wood chips, hog fuel,		
	pellets, corn stover,		
	sawdust, dirty "waste"	Wood Pellets, Straw,	
	chips, grass pellets, waxed	stover, wood chips,	Hog fuel, Wood Pellets,
	cardboard, hay, straw,	shavings, cubes, pucks,	Straw, stover, poutry litter,
Feedstocks	cubes, poultry litter	poultry litter	cubes, chips,
Output	Hot Air, Hot Water,Steam	Hot Air, Hot Water,Steam	Hot Air, Hot Water,Steam
Combustion Efficiencies	75% - 95%	76% - 95%	77% - 94%
Ash Handling Options	Manual or Automatic	Mostly Automatic	All Automatic
Emissions Options	Cyclone/Multi-Cyclone	Cyclone/Multi-Cyclone	Cyclone/Multi-Cyclone
Fire Suppression Options	Some offer automatic shutdown on heat overload	Some offer automatic shutdown on heat overload	Some offer automatic shutdown on heat overload
PC Remote Access	Most Include as Option	Most Include as Option	Most Include as Option
Installation Requirements	Some 3ph power (others require 220V Single Phase), Some require water or compressed air	All require 3ph power, Some require water, Some require compressed air	All require 3ph power, Most require water, Some require compressed air
Pricing: Average / Stnd Deviation*	\$56k / \$30k	\$145k / \$48k	\$250k / \$65k
Price per Btu*	\$0.05 - \$0.19	\$0.05 - \$0.09	\$0.05 - \$0.11
Units Suveyed	Heartland Energy Systems, LEI Products, AFAB-USA, Marth - Earth Wise, Biomass Briquette Systems, Woodmaster	AFAB-USA, Marth - Earth Wise, E-Mission Free, Biomass Briquette Systems, Woodmaster	Itasca Power Co., AFAB- USA, Marth - Earth Wise, Biomass Briquette Systems, Woodmaster
Components Included	Varies	Varies	Varies
* Outliers removed			

Balance of Systems

```
Feasibility Study
Site Preparation
Engineering
Other legal, permitting fees
Combustor Building (may not be required)
Biomass Storage
    Bin/silo
    Building
Heat distribution
    Trenching
    Pipes
    Insulation
Controls
Intersection with existing heating system
Electrical and water service as required
Ash / Dust handling
```


Q-									
	Fuel Type	Propane - BASE CASE	Pel	llets	Woodchips	Bales	Bulk Biomass		
	System		1	2	3	4	5		
Г									
		Forced Air, Radiant							
1	System Type	heat, Hot Water	Direct Air Heat	Hot Water (Air)	Hot Water (Air)	Hot Water (Air)	Hot Water (Air)		
2	Fuel Production	Offsite	Offsite	Offsite	Offsite	Onsite	Offsite		
3	Transportation	Long Distance	Long Distance	Long Distance	Long Distance	Short Distance	Long Distance		
4	Fuel Storage	Tank	Bin / Silo	Bin / Silo	Bin / Silo	Building	Building		
Г	Combustor								
5	Building	Yes - small	No	No	No	Yes	Yes		
						Loading Required			
						onto Bale	Loading Required		
6	Fuel Conveyance	Underground Pipes	Auger	Auger	Auger	Conveyor	onto Walking Floor		
	Fuel Processing					Slicing / Grinding,			
	direcly prior to					Rock / Metal	Rock / Metal		
7	combustion	None	None	None	None	detection	detection		
8	Heat Storage	None	None	Yes	Yes	Yes	Yes		
		None - heat		Underground,	Underground,	Underground,	Underground,		
ļ		produced at place		Insulated Water	Insulated Water	Insulated Water	Insulated Water		
9	Heat Conveyance	and time of need	Air ducting	Pipes	Pipes	Pipes	Pipes		
				Electricity,	Electricity,	Electricity, Water,	Electricity, Water,		
10	Utilities	Electricity	Electricity	Water, Air	Water, Air	Air	Air		
				Cyclone/Auto/Bi	Cyclone/Auto/Bi				
11	Ash / Dust storage	None	Limited	n	n	Cyclone/Auto/Bin	Cyclone/Auto/Bin		
	Additional						Yes - Front End		
12	Equipment Req	No	No	No	No	Yes - Fork Lift	Loader		

Balance of Systems

	Facility: Greenhouse @ 22K ft2 or Turkey Barn @ 50K ft2									
	Combustor Size: 2 MMBtu/h									
	Fuel Form	Pellet	Pellet	Woodchip	Bale	Bulk				
			Outdoor Water	Outdoor Water						
	Combustor	Indoor Air Heater	Heater	Heater	Indoor Water Heater	Indoor Water Heater				
						Woodchips / Hogfuel				
						/ Biomass (loose				
1	Fuel Type	Wood Pellet	Wood Pellet	Woodchip	Baled Straw / Stover	stover)				
2	\$ / Ton	\$ 175	\$ 175	\$ 75	\$ 60	\$ 60				
3	Moisture	6%	6%	30%	15%	15 - 45%				
4	System Type	Hot Air	Hot Water	Hot Water	Hot Water	Hot Water				
5	Combustor Cost	\$ 120,000	\$ 165,000	\$ 165,000	\$ 165,000	\$ 165,000				
	Balance of System									
6	Cost	\$ 120,000	\$ 105,000	\$ 105,000	\$ 320,000	\$ 350,000				
7	Initial Costs	\$ 258,000	\$ 290,000	\$ 305,000	\$ 532,000	\$ 564,000				
8	Annual Costs	\$ 47,000	\$ 47,000	\$ 25,000	\$ 28,000	\$ 27,000				
9	Annual Savings	\$ 84,000	\$ 84,000	\$ 84,000	\$ 84,000	\$ 84,000				
10	Annual Debt	\$ 31,000	\$ 35,000	\$ 32,000	\$ 55,000	\$ 57,000				
	Pre-tax Internal Rate									
11	of Return (equity)	17.1%	13.0%	42.0%	11.1%	11.9%				
12	Net Present Value	\$ 95,000	\$ 67,000	\$ 280,000	\$ 91,000	\$ 112,000				
13	Simple Payback (Yr)	8.2	9.1	5.2	9.6	9.3				

NOTES

- 1 The fuels listed cover the gamut of feedstocks reviewed in the report
- 2 Prices vary, however, those listed are based on supplier data from Minnesota in response to the request for proposal
- 3 Moisture is a key factor of any biomass fuel impacting storage, handling and boiler efficiency.
- 4 Heat generated can be used in a number of ways, e.g. Air heat can be converted, with efficiency losses to water heat, and vice versa
- 5 Costs based on an aggregated review of combustor information provided in response to the request for proposal
- 6 Costs cover what the rest of the system requires e.g. Pumps, controls, pipes, concrete, buildings etc.
- 7 Total of the lines 5 and 6 in addition to other expenses (such as 5% contingency cost). IMPORTANT: the bulk and bale systems require manual
- 8 Includes fuel, operations and maintenance. For transportation add \$2-3 per mile.
- 9 Calculated based on what will be saved by NOT using propane @ \$1.50 per gallon
- 10 Based on 75% of the project financed @ 6% over 10 years
- 11 Based on 2% inflation, 2% cost of fuel increase, 6% discount rate, 15 year project life
- 12 Present value of future discounted cash flows if NPV is positive, the investment is worth examining
- 13 Amount of time for the project to pay for itself based on savings paying off the investment

Research Summary

- Minnesota has a wealth of biomass (>25M tons pa) and biomass heating experience
- Heating needs of agricultural industry can be supplied using biomass
- Minnesota has biomass handling and combustion manufacturing capacity
- Biomass system feasibility driven by costs and financing – challenged with low fossil fuel costs

Research Summary (2)

- Economic benefit to Minnesota using local biomass resource and related industry
- Policy drivers and targets to encourage biomass heating would assist growth
- Biomass sustainability issues should be addressed
- Animal health considerations may play an important role in moving to biomass heat

Daniel Lepp Friesen DLF Consulting 204 995 1165

