Combined Heat and Power

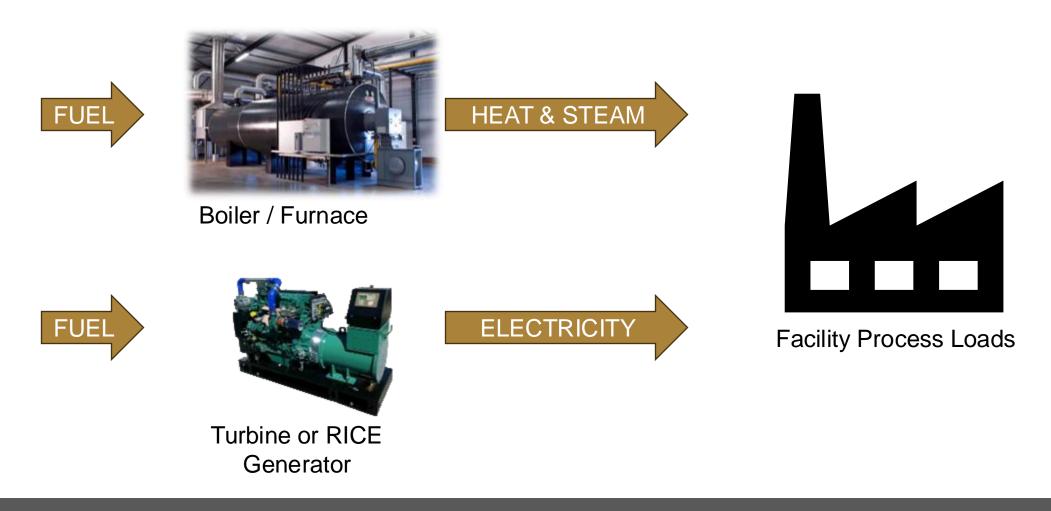
A Bird's Eye View

Roy W. Duininck, P.E.

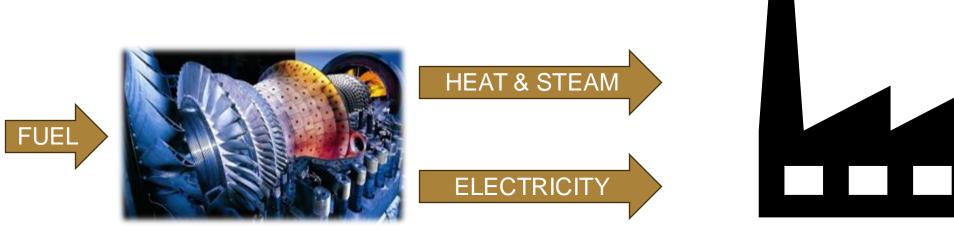
VP - Power Generation and Industrial Engineering

December 4, 2024

Agenda:


- •What is CHP?
- •How Does CHP Work?
- •Why Install CHP?
- •Who Should Consider CHP?

What is CHP?



Conventional Energy Source

Combined Heat and Power

Facility Process Loads

COMBINED HEAT & POWER

How Does CHP Work?

System of Parts

		Boiler/Steam Turbine	734	17.4%	26,741	32.1%	
	 Reciprocating Engine Gas Turbine Boiler/Steam Turbine 	Microturbine	355	8.4%	78	0.1%	
PRIME MOVER		Fuel Cell	155	3.7%	84	0.1%	
		Other	121	2.9%	806	1.0%	
		Total	4,226	100.0%	83,317	100.0%	
		* includes gas turbine/steam turbine combined cycle					
	 Microturbine 	Table taken from EPA 2015 CHP Report					
	Fuel Cell	Table taken norm EFA 2013 CHF Report					
GENERATION	 Generator and Controls / Excitation Interconnection to Electrical Distribution 						
HEAT RECOVERY	 Heat Recovery Steam Gen Heat Exchanger for Hot Wa Heat Exchanger for Hot Air 	ater					

Table 1-1. U.S. Installed CHP Sites and Capacity by Prime Mover

Sites

2,194

667

Prime Mover

Reciprocating Engine Gas Turbine* Share of

Sites

51.9%

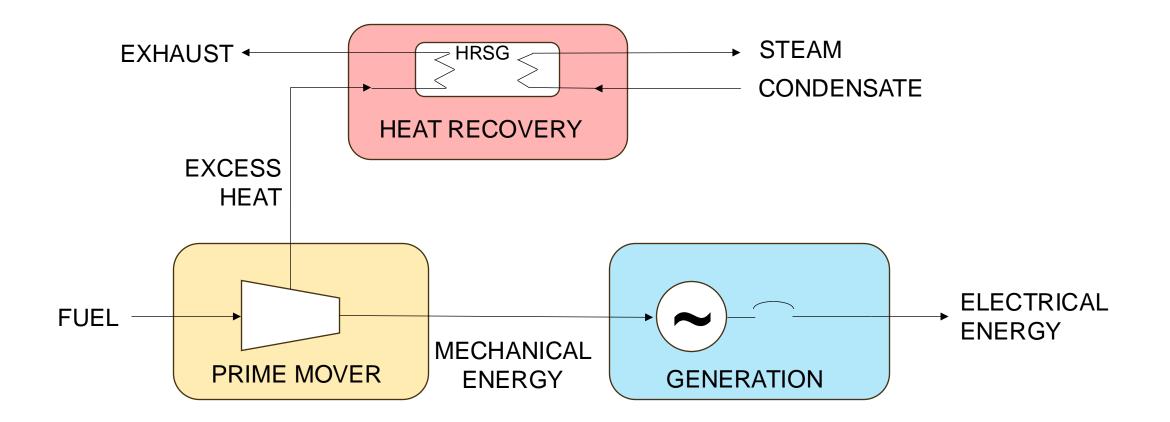
15.8%

Capacity

(MW)

2,288

53,320


Share of

Capacity

2.7%

64.0%

Typical CHP Flow Diagram

Common Fuels

Reciprocating Engine/Combustion Turbine

Gasoline Diesel Natural Gas / Biogas

Steam Turbine

Natural Gas / Biogas Coal Biosolids Nuclear

Common Types of CHP

СНР Туре	Advantages	Disadvantages	System Sizes
Reciprocating Engine (Spark or Compression)	 Quick start-up (full load in 2 minutes or less) Low capital cost Can follow variable loads 	 High maintenance costs Relatively high air emissions High noise emissions 	1 kW to 10 MW
Gas Turbine	 Highly Reliable Low Emissions No cooling needed Large amount of heat generation Relatively fast start-up (full load in 20 minutes) 	 Requires high pressure gas source Reduced efficiency at low loading Output is dependent on the ambient temperature 	500 kW to 300 MW
Steam Turbine	 Long working life and high reliability Boilers can be fired by many fuel sources 	 Requires steam source (boiler) Slow start up (hours) 	50 kW and up large scale MW

Other Types of CHP

СНР Туре	Advantages	Disadvantages	System Sizes
Micro Turbine	 Limited amount of moving parts Compact and light weight Low emissions No cooling needed 	 High capital cost Relatively low mechanical efficiency Limited to lower temperature and power applications 	30 kW to 250 kW
Fuel Cells	 Low emissions Quiet operation Modular design 	 High capital cost Sensitive to fuel impurities Fuel is more complicated to procure Relatively low power density 	5 kW to 2 MW

Why Install CHP?

Increase Efficiency

Conventional heat and electrical generation is typically 50-55% efficient

By combining the heat and electrical generation, CHP can typically achieve efficiencies of 65-85%

Electrical Independence

- Aging Electrical Infrastructure
- Reduced Accredited
 Generation
- Increasing Electrical Loads
- Storms

CHP Keeps Your Lights On

Economic

Reduce Energy Cost

Reduce Down Time

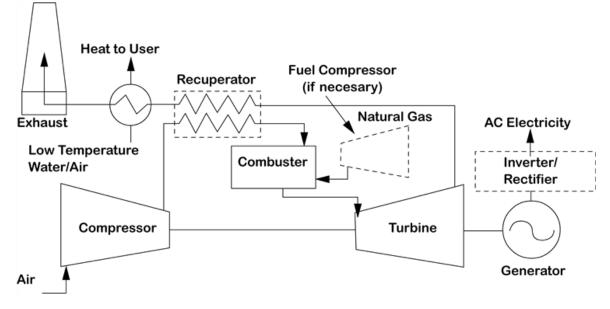
Reduce Demand Charges & Peak Shaving

Who Should Consider CHP?

Common Applications

- Industrial Facilities
 - Ethanol Plants
 - Beet Sugar Processing
 - Soybean Crush and Refining
 - Many Others...

- Commercial Buildings
 - Municipal Heating Districts
 - Multi-building Campus
 - Many Others...



- Residential
 - Domestic Hot Water
 - Space Heating

Microturbines CHP

- Small Combustion Turbines
 - Modular Units: 30-250 kW
 - Can run on multiple types of fuel including some "waste gas"
- Electrical production plus domestic water or space heating
- Current capital costs are relatively high

References

US Department of Energy

• https://www.energy.gov/eere/iedo/combined-heat-and-power-basics

U.S. Energy Information Administration

• https://www.eia.gov/todayinenergy/detail.php?id=52158

U.S. EPA

• https://www.epa.gov/energy/combined-heat-and-power

MISO

https://cdn.misoenergy.org/2024%20Reliability%20Imperative%20report%20Feb.%2021%20Final504018.pdf?v=20240221104216

GE Vernova

• <u>https://www.gevernova.com/gas-power/resources/education/combined-cycle-power-plants</u>

Solar Turbines

• <u>https://www.solarturbines.com/en_US.html</u>

Yanmar – Micro CHP

<u>https://www.controlledair.com/yanmar-chp-micro-cogen/</u>

Thank You

Roy W. Duininck

VP – Power Generation and Industrial Engineering (320) 905 4776

duininckr@powersystem.org

www.powersystem.org

