

Heat to cool

Industrial Decarbonization

Presentation

Germán Robledo Heat Pumps Sales Manager German.Robledo@gea.com

- Mechanical Engineer
- 32 years of experience

United States

German Robledo

GEA.com/heat-to-cool

CONTENT

- Decarbonization
- Thermal Energy Needs
- Heat pump technologies
- GEA Heat Pumps
- Applications and processes

06 Steam

- ADD BETTER Consulting
- HEAT PUMP BARRIERS
- Case study: Coca-Cola

decarbonization

SUSTAINABILITY

Why decarbonize?

Ozone Layer

- In the last 30 years, human beings have made progress in stopping damage to the ozone layer.
- Recognition of the harmful effects of CFCs and other substances.
- It led to the signing of the Montreal Protocol in 1987: a landmark agreement for the phase-out of these substances.
- At the end of 2018, the UN confirmed in a scientific assessment that the ozone layer is recovering.

Climate Chage

- The Paris Agreement is an international treaty on climate change that was adopted on December 12, 2015 in Paris and entered into force on November 4, 2016.
- Their goal: to limit global warming to well below 2°C, preferably to 1.5°C, compared to pre-industrial levels.
- To achieve this goal, countries aim to reduce greenhouse gas emissions as much as possible, acronym Green House Gases (GHG).

TIME magazine and Statista have determined the world's most sustainable companies for 2024.

GEA is one of the most sustainablecompanies in the world and is among the33 best in the world and among the 3 bestin Germany

4. The consumer will have the option or purchase decision. The new generations are more aware.

1. Commitment to climate change

2. Several countries require labels on the product that show the carbon footprint produced, with tax effects and restrictions.

Why decarbonize?

3. Several countries require the carbon footprint of the manufacturer, also with tax effects and restrictions. CARBON TAX

How do we achieve this?

FIRST

Prevent emissions through RENEWABLE ENERGY technologies such as wind, solar, geothermal, biomass, hydrogen.

SECOND

- Find heating process technologies other than fossil fuel combustion.
- **ELECTRIFY ALL HEATING PROCESSES.**
- Using electricity as the way to generate or produce heat.
- Fuel change. Electricity for fuel.

The three scopes of Emissions

Route to industrial decarbonization

Department of Energy of the United States of America

The 4 pillars of the road to Decarbonization

- 1. Energy Efficiency: improve your current process.
- **2.** Electrification: combustion heating technologies, e.g. by means of electricity.
- 3. LCFFES (Low Carbon Fuel FeedStocks & Energy Sources) Switching to low or zero carbon fuel: switching from fossil fuel to biomass or hydrogen in the combustion process.
- 4. CCUS (Carbon Capture, Utilization and Storage): Technologies that capture emissions before or after combustion and then use or inject them back into the earth.

GE7

Heat pumps – Scopes of Emissions

To achieve Carbon Reduction, it is achieved with the Use of Natural Refrigerant, Heat Pump and Renewable Energies

Heat pump applications & temperatures

Heating needs in the process industry and for space heating:

GEA Heat Pump Ov

Relevance of refrigerants

Features & benefits of the natural ammonia:

ODP = 0**PFAS free**

Low charges & costs

Safety

High

Efficiency

Example calculation with screw compressor ¹):

Ν	IH ₃ is				
40 % more efficient		COP m kW/kW	Heating Rating in MBH (kW) ¹	Vol. heating in kW/[m³/h]	GWP
	R-717	3,43	17,490 (5125)	1,75	0
	R134a	2,71	83 NH₃ provide 83 twice the	0,88	1430
	R152	2,95	capacity 10,200 (3017)	1,03	124
	R1234yf	2,37	8560 (2510)	0,86	4
	R1234ze	2,59	7510 (2201)	0,75	7
	R1336mzzZ	3,00	1770 (518)	0,18	7
	R600a	3,03	5870 (1720)	0,59	3
	R515B	2,39	6810 (1996)	0,68	293

1) Z-type (2,927 m³/h swept volume, at +90/+77 °F (+32/+25 °C) heat source inlet/outlet, and +158/+194 °F (+70/+90 °C) heat carrier return/supply temperature.

Thermal energy

SUSTAINABILITY

Understanding Thermal Energy Needs

Heat: energy entering or being injected. Heat energy that goes out or is removed

Available technology

LEVEL OF TECHNOLOGY AVAILABILITY

Commercial Now Available for T < 100°C

Prototype, pilot, demonstration

Still in development. Laboratory.

SECTOR	PROCESS		<u> </u>					-	TE	MPE	RATUR	ES					-			
		20	4	40	60		80		100		120		140	160	180	200	•	°C	темр	RANGE
		68	10)4	140		176		212		248		284	320	356	392		°F		
Paper	Drying																		90-240°C	194-464°F
-	Boiling															_		_	110-180°C	230-356°F
-	Bleaching															_		_	40-150°C	104-302°F
	De-inking																	_	50-70°C	122-158°F
	Drying															-			40-250°C	104-482°F
-	Evaporation																		40-170°C	104-338°F
	Pasteurization		— C c)mn	nercia	allı	/								D	_		_	60-150°C	140-302°F
	Sterilization				-	-										_		_	110-140°C	230-284°F
Food	Boiling			ava		e										_		_	70-120°C	158-248°F
&Beverages	Distillation															_		_	40-100°C	104-212°F
Ű	Blanching														R	_		_	60-90°C	140-194°F
	Scalding													_		_		_	50-90°C	122-194°F
	Concentration							-								_			60-80°C	140-176°F
	Tempering		Prov	en 1	techn	юł	ogv	_								_		_	40-80°C	104-176°F
	Smoking						0/	-										_	20-80°C	68-176°F
	Destillation			_							>								100-300°C	212-572°F
	Compression			_												_			110-170°C	230-338°F
Chemical	Thermoforming			_							_					_		_	130-160°C	266-320°F
enemidai	Concentration			M	VION	ΙΔ												_	120-140°C	248-284°F
	Boiling					., ,					_				ĸ				80-110°C	176-230°F
	Bioreactions				717)							_	20-60°C	68-140°F
Automotive	Resin Molding														Y				70-130°C	158-266°F
	Drying			r	NH3					t									60-200°C	140-392°F
	Pickling																		20-100°C	68-212°F
	Degreasing																		20-100°C	68-212°F
Metal	Electroplating																		30-90°C	86-194°F
	Phosphating									- +									30-90°C	86-194°F
	Chromating			Jp t	<u>(† 95</u>	°C					•				F				20-80°C	68-176°F
	Purging									,									40-70°C	104-158°F
	Injection Molding																		90-300°C	194-572°F
Plastic	Pellets Drying														V				40-150°C	104-302°F
	Preheating										ן כ								50-70°C	122-158°F
Mechanical	Surface Treatment														E				20-120°C	68-248°F
Engineering	Cleaning										_ د								40-90°C	104-194°F
	Coloring																		40-160°C	104-320°F
Toxtilos	Drying																		60-130°C	140-266°F
Textiles	Washing														0				40-110°C	104-230°F
	Bleaching																		40-110°C	104-230°F
	Glueing														D				120-180°C	248-356°F
	Pressing																		120-170°C	248-338°F
	Drying														Ν./				40-150°C	104-302°F
Wood	Steaming																		70-100°C	158212°F
	Cocking																		80-90°C	176-194°F
	Staining														E				50-80°C	122-176°F
	Pickling																		40-70°C	104-158°F
	Hot Water														N				20-110°C	68-230°F
	Preheating																		20-100°C	68-230°F
Several Sectors	Washing /Cleaning																		30-90°C	86-194°F
	Space Heating																		20-80°C	68-176°F
· ·	· · · O	20		10	60		80	-+	100		120		140	160	180	200		°C		-
4		68	1()4	140		176		212		248		284	320	356	392		°F		
		1 1 - 1																		

Combustion (boiler) vs. Heat pump (electricity)

Boilers

They produce or generate heat.

Are Oversized.

They deliver temperatures above process.

Efficiencies between 80% and 90% (COP 0.8 and 0.9).

Heat pumps

They do not produce heat, they move it.

It is selected for the required load and there is no oversizing. They don't waste energy.

It is selected for the required temperature and not above it. Precision - Efficiency

Efficiencies between 300% and 1000% (COP 3.0 and 10.0)

They offer a double benefit: heating and cooling.

Energy Cost Comparison / Spark Spread & Heat Pump Efficiency

Spark Gap is the Electrical/\$Kw Fuel Cost Ratio \$kw Scoping Test (Proof of Savings Form)

ІНР СОР	3.0
Gas Boiler Efficiency	80%
Efficiency Ratio (IHP COP/ Boiler eff)	3.75

If the smallest Spark Gap, < 3.75, saves energy, gas is NOT convenient, electricity is. If the Spark Gap equals, = 3.75, costs associated with the expense of gas or electricity would be even. If the Spark Gap is greater, > 3.75, more is spent on electricity than on using gas, i.e., Gas is convenient.

The heat pump is more efficient than the boiler.

Increasing the COP performance coefficient:

OPEX improvement of the heat pump. Increases energy savings. Reduces ROI time.

PISTON & SCREW EFFICIENCY

PISTON

Required Capacity 9 MW / 180°F

SUMMER WINTER **Heat Sink** Process Fluid Water Water Required Heating Capacity (KW) 5 X 1800 5 X 1800 40 40 Inlet Temperature (°F) 180 180 Outlet Temperature (°F) Heat Source- Cascade Condenser **General Data** Chiller Model RedGenium 950 RedGenium 950 5 X 1800 5 X 1800 Capacity per System (KW) No. of Systems Type of Compressor Piston Model V950 Piston Model V950 XHP XHP **Compressor Motor BHP Compressor Motor HP** 500 **Efficiency Summary** 5.78 **COP** - Coefficient of Performance 5.13 (line) **COP** - Coefficient of Performance 6.29 (shaft) Total electrical consumption (line), 351 311 kW

Only Full Load Calculation			
	Pl	ISTON	SCREW
Running Hours per Year	5000		
TCO Period in Years	1		
Energy Costs per kW	\$0.12		
Capacity Heating kW	9000		
СОР		5.13	4.27
Total unit Energy Consumption kWh		1755	2108
Total Energy Cost over Period		\$1,053,000	\$1,264,800
Savings		\$211,800	
PAYBACK vears		3	

WINTER SUMMER **Heat Sink Process Fluid** Water Water 4 X 2250 Required Heating Capacity (KW) 4 X 2250 Inlet Temperature (°F) 40 40 Outlet Temperature (°F) 180 180 Heat Source- Cascade Condenser **General Data** Chiller Model RedAstrum RN RedAstrum RN 4 X 2250 4 X 2250 Capacity per System (KW) No. of Systems Type of Compressor Screw Model 230 GL Screw Model 230 GL **Compressor Motor BHP** 646.2 646.2 **Compressor Motor HP** 800 800 **Efficiency Summary COP - Coefficient of Performance** 4.27 4.64 (line) **COP** - Coefficient of Performance 4.67 5.08 (shaft) 527 485 Total electrical consumption (line), kW

Sell Price for 5 Units)\$3,141,550 USD

Sell Price for 4 Units)\$ 2,508,533 USD

GE/

Price Difference \$ 633,017 USD BUT...... Payback on Piston becomes after 3 years resulting in more savings through whole lifecycle

SCREW

PISTON HEAT PUMP EFFICIENCY & SCREW HEAT PUMP EFFICIENCY

Boiler Calculations								
Heat Capacity REQUIRED	kW	9000	30,708 MMBH		HEATPU	ЈМР СОР	COP 5.13	
Boiler Efficiency	%	80%	COP = 0.8				PISTON	
Running hours	h / y	5,000						
Energy Consumed	BOILER	11,250	HEAT PUMP	1754	(S KW	ell Price for 5 L	Jnits)\$3,141,550 U	SD
		56,250,000	Electricity Used KW / y		8,771,930	Energy Savings	47,478,070	Kw/y

Cost / kw/h	Electricity kW/h	Natural Gas Price \$/MMBtu	Natural Gas kW/h	Spark Gap (Ratio)	Boiler OPEX / y	Heat Pump OPEX / y	OPEX Diff / y	Return Of Investment (ROI) years
	\$ 0.1200	\$ 13.60	\$ 0.0464	2.6	\$ 2,610,000	\$ 1,052,632	\$ 1,557,368	2

Boiler Calculations								
Heat Capacity REQUIRED	kW	9000	30,708 MBH		HEATPU	ІМР СОР	COP 4.27	
Boiler Efficiency	%	80%	COP = 0.8				SCREW	
Runninghours	h/y	5,000			(Se	Il Price for 4	Units)\$ 2,508,533 (JSD
Energy Consumed	BOILER	11,250	HEAT PUMP	2108	kW			
		56,250,000	Electricity Used kW / y		10,538,642	Energy Savings	45,711,358	Kw/y

Cost / kw/h	Electricity kW/h	Natural Gas Price \$/MMBtu	Natural Gas kW/h	Spark Gap (Ratio)	Boiler OPEX / y	Heat Pump OPEX / y	OPEX Diff / y	Return Of Investmen (ROI) years
	\$ 0.1200	\$ 13.60	\$ 0.0464	2.6	\$ 2,610,000	\$ 1,264,637	\$ 1,345,363	2

Price Difference \$ 633,017 USD but Energy Savings and CO2 Abetment will be diminished due to low COP

Technologies Heat Pumps

Heat pump technologies

GE7

Application – Principle of Operation

Compression Cycle

Process Heat/Waste Water

Cooling circuits

(liquid)

Environmental sources (sea, river, lakes, ...)

SUSTAINABILITY

Ammonia Heat Pump Example

GEA RedGenium

GEA Portfolio in Heat Pumps – Capacity

Temperature Application Diagram

The highlighted area shows the range of supply temperatures for heating demand and heat capacity at the ambient heat source level.

RedGenium

Piston Heat Pump 11 types Up to +95 °C / 203°F

Approach:

Higher supply temperatures **Best-in-class efficiency** Lower power consumption

RedAstrum

Screw Type Heat Pump 7 types

Up to +85 °C / 185°F

- 500 3,000 Kw
- 1706 10,238 MBH

Approach:

Low installation footprint **High differential pressures Focused for high** differential temperature between heat source and heat reservoir

Blu-Red Fusion

Chiller + Heat Pump Multiple types Up +95 °C /203°F

500 – 3,500 kW

1706 – 11,945 MBH

Approach:

Combined cooling and heating **Maximum efficiency Flexibility** Simultaneous or variable cooling and heating possible.

Custom Heat Pumps All compressors

Custom

Up to +95 °C / 203°F

- 250 10,000 Kw
- 853 34,129 MBH

Approach:

High Heat Capacity Many flexible design and configuration options

- 150 3,500 kW
- 511 11,945 MBH

ADD COOL

Spray drying

- Spray drying is an industry-standard method for making high-quality, stable powder products.
 - The production of the hot air used by the atomization tower usually uses energy generated by fossil fuels.

- To make spray drying more sustainable, GEA integrates heat pumps
- ADDCOOL GEA uses CO2 Refrigerant heat pumps to preheat air up to temperatures of 120°C

- At the same time, 2°C cold water is generated that can be supplied to the existing cold water network to reduce energy consumption
- Drying Operation and Product Quality Are Not Affected

GEA Heat Pump References

Some global examples of applications

Thermal Districts(CND)

2x 2-stage heat pumps

Pharmaceutics (FRA)

1x GEA RedAstrum

Pharmaceutics (FRA)

1x GEA RedAstrum

SANITIZE PLANT(BHR)

1x GEA custom recip hp

By 2024 GEA HRT has installed over 200 heat pumps

GEA Heat Pumps References

僻

2x RedGenium 950 (K)

14,332 MBH / 4.2 MW total

North America

1x RedGenium 950 (K) 5,800 MBH / 1.7 MW

2x RedGenium 950 (W) 14,672 MBH / 4.3 MW total

Applications

Dairy

- District Thermals
- Brewery
- Food

GEA

1x RedGenium 550 (K) 3,412 MBH / 1 MW

1x RedGenium 950 (K) 7,000 MBH / 2.05 MW

2x 2-stage heat pumps 13,650 MBH / 4 MW total

The map shows the location of current heat pump projects for GEA North America. The heat pumps may be at different stages (in operation, commissioning, in production).

Total Cost Owner ship - TCO

INNOCENT - The World's First Cimate Neutral Juice Factory

Total savings **\$ 20.500.386**

CO2 emissions avoided 103,158 tons (green electricity)

Fuel price \$ 0.207 /Nm3 Electricity price \$0.052 /kWh CO2 emits. (\$/ton/y)\$ 30

Annual energy cost increases acc. Polynomial

Annual water cost increases 0% Annual maintenance cost increases 2% Annual CO2 tax increases acc. Polynomial

Application examples

Example in dairy products

Cooling and heating

Example in dairy products

Cooling and heating

Example in drying

CONVENTIONAL DRYING

DRYING VIA HEAT PUMP

GE/

Example Wastewater / Water Treatment / Sewage Water

Heating or Drying by means of heat pumps

ASHP – AIR SOURCE HEAT PUMP

Illustration of generic 10MW airsource heat pump

Development projectAir source heat pump with direct ammonia

- With liquid ammonia defrost
 - Full heating capacity during defrost period
 - Almost zero energy required for defrost

GSHP - GEOTHERMAL SOURCE HEAT PUMP

Decarbonize steam

SUSTAINABILITY

Steam / Heat Pump / n-Pentane Refrigerant (R601) / Demo Site /Belgium

Sugar Production Process Plant

MVR (Mechanical Vapor Recompression) (Recompress Steam) Open Type Heat Pump

Vapor Recompression (MVR)

Steam generated at low pressure from closed-type heat pumps can be re-compressed by means of an MVR to increase in pressure and temperature

MVR can raise the pressure up to <275 psig), other combined technologies can go higher.

Typical Feed Temperatures at an MVR

120° F or 48.8° C

140° F or 60° C

170° F or 76° C

The higher the hot water inlet to the MVR, the better the COP of the MVR.

VAPOR FANS – VACUM STEAM RECOMPRESSION

MVR – VAPOR FANS

Water has a change of state to Steam, in an exchanger or container that is in Vacuum (negative pressure)

Vacuum is created by the Steam Fan

Depending on conditions, each Steam Fan lifts on average 8°C to 10°C

Fan number or steps depends on final temperature 1st Fan lifts from $85^{\circ}C + 10^{\circ}C = 95^{\circ}C$ 2nd Fan lifts $95^{\circ}C + 10^{\circ}C = 105^{\circ}C$ 3rd Fan Lifts $105^{\circ}C + 10^{\circ}C = 115^{\circ}C$ 4th Fan Levant $115^{\circ}C + 10^{\circ}C = 125^{\circ}C$

The Norm in brewery

Boiler = Heat, Cooling = Cold

Hot water and steam

Heating + Cooling Energy =3600 + 5600kW Total power = 137+1056+830kw COTP = 4.5, Co2/hr = 158kg/hr

The first steam-producing heat pump has been installed at Felleskjøpet Agri in Trondheim

- ✓ Produces 2 tons of steam per hour
- ✓ Recycles air-sourced waste heat
- ✓ Capacity of 1.4 1.8 MW_{th}
- ✓ Efficiency gain of 67%

Steam generating heat pumps, OST Webinar, 18 March 2024

STEAM TEMPERATURES (CHILLERS + MVC+ MVR)

ADD BETTER CONSULTING

SOSTENIBILIDAD

Our organization

GEA is divided into **five divisions**, each with up to six business units. The units are based on comparable technologies and have leading market positions.

The **country organizations** stand ready to serve their respective customers as a central point of contact, offering them local access

to an extensive portfolio of products and services.

GEA NEXUS

Add Better: Holistic Solutions

GEA Expertise from all Divisions, incorporated to customer process

GEA

BARRIERS of heat pumps

WHY STILL SO HARD IN THE USA TO GET INTO A HEAT PUMP ??

Despite the great ecological potential, there are still some market barriers to the wider spread of industrial HTHPs:

Lack in the understanding of the HTHP technology (low level of awareness of the technical possibilities among users, consultants, investors, plant designers, producers, and installers).

Lack of knowledge about the integration of HTHPs in industrial processes.

<u>Cost-intensive integration into existing processes</u> due to tailor-made designs (leads to payback periods larger than for gas or oil-fired boilers).

Lack of suitable and approved compressors and refrigerants.

<u>Competing heat-producing technologies</u> generating high temperature using fossil fuels.

Low fossil energy prices (low gas to electricity price ratio)

Lack of pilot and demonstration systems.

Lack of training and events additionally supporting the spread of HTHP knowledge

Domestic Manufacturing: Not enough Manufacturers in the US and long lead delivery times (40 -50 weeks) (Who holds the line are Heat Exchanger Manufacturers, they are in the 25-30 weeks lead time).

<u>Utility Pricing Structures</u> Currently utility demand tariffs are structured in such a way that drawing load during peak hours contributes to making electricity a non-competitive input fuel, compared to natural gas.

Insufficient Grid Infrastructure Infrastructure to support the requisite load of electrifying process heat is typically inadequate, including both distribution infrastructure and customer substation and internal wiring.

<u>What makes</u> different from	<u>s the USA</u> n Europe:	Spark Gap or Spark Spread (gas prices & kw prices) are much higher in EU which helps justify the energy savings and pay back
USA does not ha Emission Tax wh factor justify pumps rather th ratio and Ener	ave yet a CO2 ere in EU this many Heat at Spark Gap gy Savings.	Europe has learned to switch from Steam to Hot Water
	EU has more thai	e Gov Funding n US.

MANY BROWNFIELDS – RETROFITS DO NOT HAVE SPACE FOR HP

CURRENT BARRIERS

SPACE on BROWN FIELDS - RETROFITS

Many companies do not have space in their current Engine Room or Plant.

OUTDOORS

This will force a market for ENCLOSURES

ENCLOSURES becomes Engine room so now it needs to follow all Codes, Fire Codes and any building code related to space, building

TES (Thermal Storage Energy) – Buffer Tanks

140 °F

140 °F

The Dutch Coca-Cola factory has received CO2-neutral certification according to PAS2060

GEA.com