Networking Break

Agricultural Utilization Research Institute

Thank you to our sponsors!

Agricultural Utilization Research Institute

Developer Spotlight

Raycho Spilkov *Vice President – Development, Vanguard Renewables*

Vanguard RENEWABLES

Changing the Way the World Views Waste.

CARD Y WINTS

CALLER DIN - BANK OF

Who is Vanguard Renewables?

Nationwide leader in organics-to-renewable energy AD developer, owner, ٠ operator 185 food waste ٠ partners and growing Projected >150 dairy farm ٠ partners Projected >15 bcf of RNG ٠ produced annually

٠

Organics Depackaging

- One of our Organics Recycling Facilities (ORFs) can process up to 250 tons of packaged material per day
- Many codigestion projects going forward will feature an ORF

We're Excited to Work Together to Make Minnesota's Agriculture, Food & Beverage, and Energy Industries More Sustainable

Thank You!

Developer Spotlight

Stephen Dvorak, PE *President DVO, Inc.*

Anaerobic Solutions

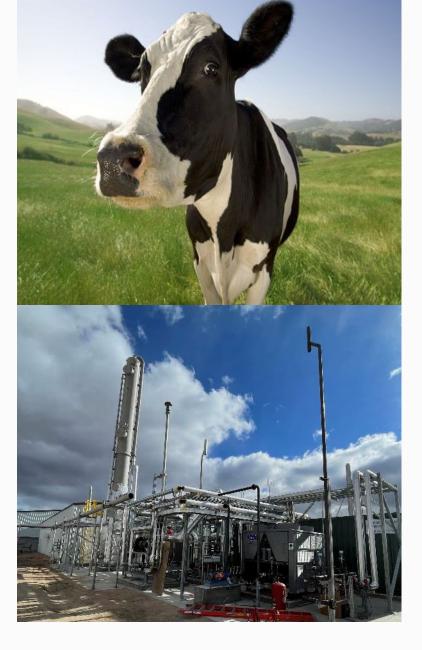
High-Efficiency, 3rd-Gen AD for Global Agriculture

American company, based in Wisconsin

- DVO was founded in 1989 by Steve Dvorak, P.E.
- Packerland digester in 1985
 still operating today

Our first digester (patented)

- Gordondale Farms, WI, September 2001
- Today, DVO is the USA market leader, operating at +130 sites in 24 U.S. states
- International operations include Canada, Chile, South Africa, United Kingdom, China, South Korea, Serbia, India & Australia



Today...

- DVO processes manure from 400,000 dairy cows every day,
- Which is about 13.2 million gal/day (50,000 M³/day) of manure.
- DVO also processes hog waste, chicken litter, food wastes and municipal organics.
- >30,000 MMBtus of renewable energy is produced daily.

2-Stage Mixed Plug-Flow

- Guaranteed consistent retention time of influent wastes = greater biodegradation of TS
- More biogas per ton of TS
 = more revenue potential
- Superior odor & pathogen destruction
- Optional N, P & K separation from liquid effluent after digestion
- Better quality of separated fiber solids
- More thermally efficient = > CI score

SDVO SDVO

Renewable CNG

When used as a transportation fuel to replace diesel or gasoline, renewable CNG (or RNG) earns additional credits – an attractive revenue option.

©2022 DVO, Inc.

Separated fiber solids – valuable, & versatile

- High-quality Animal Bedding
 - Pathogen Reduction
 - Somatic Cell Count/Herd Health
 - Clean Cows
- Fertilizer
- Peat Moss Replacement
- Off-site sales
- Particle Board products

Pathogen destruction

Potentially harmful pathogens such as e-coli and salmonella are reduced in the digested waste – often to the point of "none-detected."

- An answer to concerns about spreading raw, unprocessed farm wastes on fields,
- Via DVO's "Guaranteed Retention Time"... unlike older AD designs, every unit of waste is retained in the vessel for a specific amount of time. Nothing is removed too soon, or too late, resulting in a *higher level* of biodegradation of organic wastes.
- Post-AD pasteurization is optionally available.

Land application

Liquid Fertilizer, inorganic nutrients

- N, P and K are not destroyed by the digester. Instead, they are transformed to an inorganic state that is already "plant-available," and now can be land-applied to a growing crop.
- By restoring these valuable nutrients to the land, less artificial fertilizers need to be employed.
- DVO owners report up to 100% increase in yield for alfalfa, using digested liquid fertilizer.
- pH Increase
- Lessened Likelihood of Runoff
- Liquid can be pivot-irrigated

Requirements for successful AD systems

- Guaranteed retention time for the entire waste stream (for higher efficiency and pathogen destruction)
- No stratification of solids in-vessel
 - Constant temperature
 - Full dispersion of bacteria population
- Ability to handle multiple waste streams
- Ability to handle a wide range of waste streams (including poultry, hog, ethanol, food wastes & FOG), and
- Ability to handle both high and low solids concentrations

Questions to ask when selecting a digester...

- simple & practical operation
- Low maintenance
- Cost per Btu produced
- Btus produced per unit of Waste
- Ability to accept different % solids, and waste streams
- Number of systems in operation (experience & track record)
- System's parasitic load (% of kW produced)
- Quality of separated solids & liquid effluent
- Third party data / performance verification

- In the USA more agricultural wastes (by both number of installations and total volume) are processed in DVO digesters than any other,
- 97% of all DVO digesters ever built are still in operation,
- We are fortunate to see regular repeat business.

Ammonia Recovery (AR) (patented)

-

IMIL

Thank You. info@dvoinc.com

INFO@DVOINC.COM CHILTON, WI USA 920.849.9797

Developer Spotlight

Noah Carlson Application Engineer BIOFerm Energy Systems

Agricultural Utilization Research Institute

COMPANY OVERVIEW

Noah Carlson, Application Engineer

COMPANY PROFILE

- Headquartered in Madison, WI
- Established in 2007
- Technology provider for:
 - Gas Upgrading
 - Anaerobic Digestion
 - Solar

• Other services:

- Biogas & Solar Engineering
- Consulting
- Technology
- Plant Operation & Maintenance
- Financing
- **Experience** building hundreds of international projects

BIOFERM

BIOGAS SOLUTIONS ACROSS ORGANIC WASTE SECTORS

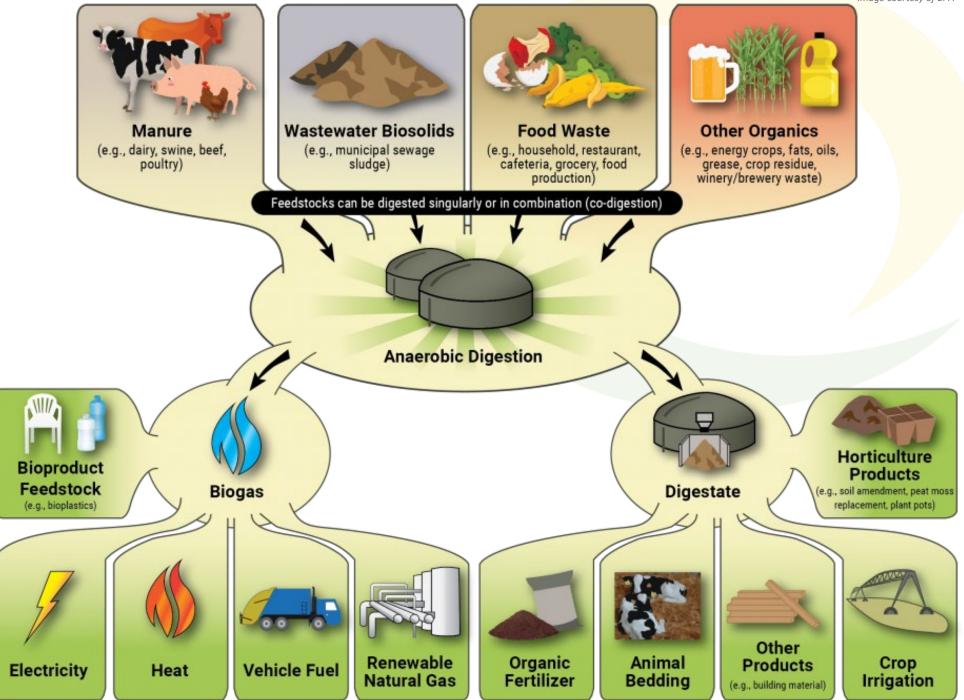


Image courtesy of EPA

WHAT IS ANAEROBIC DIGESTION?

Anaerobic digestion (AD) is a process through which bacteria break down organic material in the absence of oxygen.

BIOFERM

COMPREHENSIVE AD TECHNOLOGY

- FERMADOR Continuously Stirred Tank Reactor (CSTR)
- FERMIGMA Plug Flow Reactor (PFR)
- FERMIGMA Small-Scale CSTR or PFR
- FERMITIGO Dry Fermentation

BIOFERM

FERMADOR CASE STUDY: ROSENDALE DAIRY

Location: Pickett, Wisconsin

Waste Stream: 350 tons/day dairy manure from 8,500 cows

Capacity: 1.4 MW_{el}

Technology: 2 FERMADOR tanks

Operational: Since 2013

Offsets: Avoided release of 44,602 tons of CO₂ per year & provides electricity to 1,107 homes/year

FERMIGMA CASE STUDY:

CITY OF AKRON & KB BIOENERGY

Location: Akron, Ohio

Waste Stream: 15,000 tons/year of biosolids

Capacity: 1.8 MW_{el}

Technology: 3 FERMIGMA plug-flow digester & 3 FERMADOR complete mix digester

Operational: Commissioned in 2013

Offsets: Provide electricity to 932 homes/year, heat 878 homes/year

BIOFERM

FERMIGMA SMALL-SCALE AD CASE STUDY:

ALLEN FARMS

Location: Oshkosh, Wisconsin

Waste Stream: 6,200 tons/year dairy manure from 136 cows

Capacity: 64 kW_{el}

Technology: 2 FERMIGMA small-scale digesters

Operational: Since 2012

Offsets: Avoided release of 2,312 tons of CO₂ & provides electricity to 50 homes/year

BIOFERM

FERMITIGO AD CASE STUDY: UNIVERSITY OF WISCONSIN-OSHKOSH

Location: Oshkosh, Wisconsin

Waste Stream: 8,000 tons/year of food waste, yard waste, & crop residuals

Capacity: 370 kW

Technology: 4 fermenters

Operational: Since 2011

Offsets: Avoided release of 9,641 tons CO₂, provides electricity to 220 homes/year

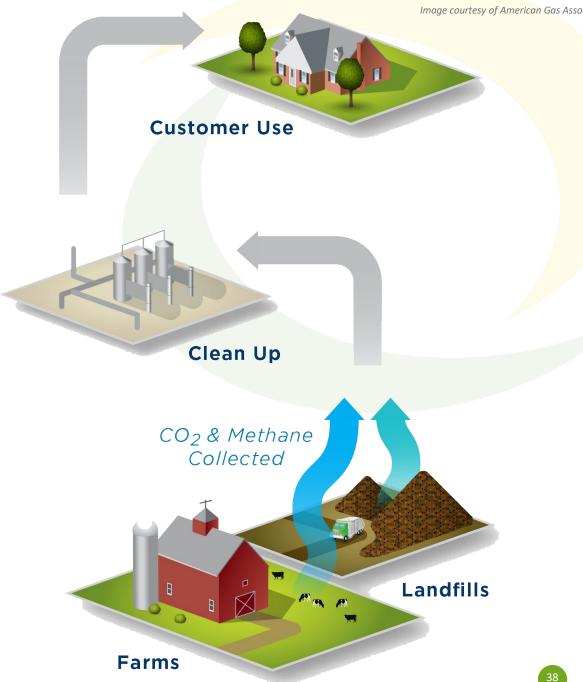


Image courtesy of American Gas Association

WHAT IS RNG?

- Renewable natural gas (RNG) is pipeline-quality gas that is fully interchangeable with conventional natural gas.
- RNG is essentially methane from biogas that has been processed to high purity standards.

BIOFERM

BIOVIS COMPREHENSIVE EPC GAS UPGRADING PRODUCTS

PSA (1 & 2-Stage) Membrane

Biological Desulfurization

Hydrogen Sulfide Removal **VOC Removal**

BIOVIS P1200 1-STAGE PSA CASE STUDY:

SEABOARD ENERGY

Location: Guymon, Oklahoma

Completion: Commissioned July 2017

Capacity: 1,200 scfm biogas from covered lagoons for 5.5 millions hogs/year

Raw Gas: 68% CH₄, 24% CO₂, 1.5% N₂ , 0.4% O₂, 4,000 ppm H₂S

Performance: Exceeds ET pipeline requirements

BIOVIS P500 1-STAGE CASE STUDY:

WISCONSIN DAIRY FARM

Location: Green Bay, Wisconsin

Completion: Operational since early 2021

Capacity: 500 scfm biogas from anaerobic digester for 3,500+ dairy cows

Raw Gas: 60% CH₄, 40% CO₂, >1,500 ppm H₂S

Performance: Exceeds ANR pipeline requirements

BIOVIS P2500 2-STAGE CASE STUDY: DANE COUNTY LANDFILL

Location: Madison, Wisconsin Completion: Commissioned April 2019 Capacity: 2,500 scfm landfill gas Raw Gas: 56% CH₄, 34% CO₂, 6.6% N₂ , 0.3% O₂, 3,000 ppm H₂S

Performance: Exceeds ANR pipeline requirements

COMBINED RENEWABLE ENERGY

Anaerobic Digester + Gas Upgrading + Solar Energy System

BIOFERM

YOUR RENEWABLE ENERGY PARTNER

🖳 One Stop Shop

Proven Technology & Experienced Team

Ō

Quick & Efficient Deployment

Industry-Leading Performance Guarantee & Warranty

Financing Options

•••

Completely Integrated System

BIOFERM

QUESTIONS?

INFO@BIOFERMENERGY.COM

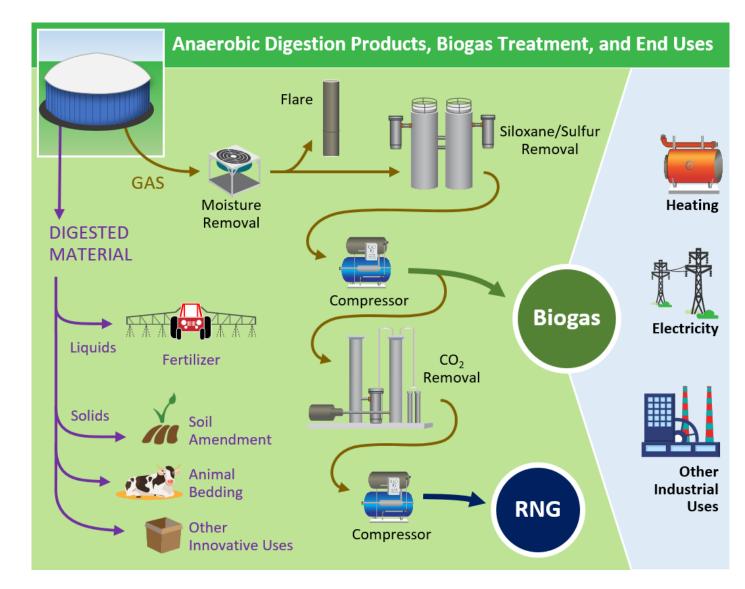
BIOFERMENERGY.COM

Audience Q & A

Agricultural Utilization Research Institute

Biogas Uses and Upgrades

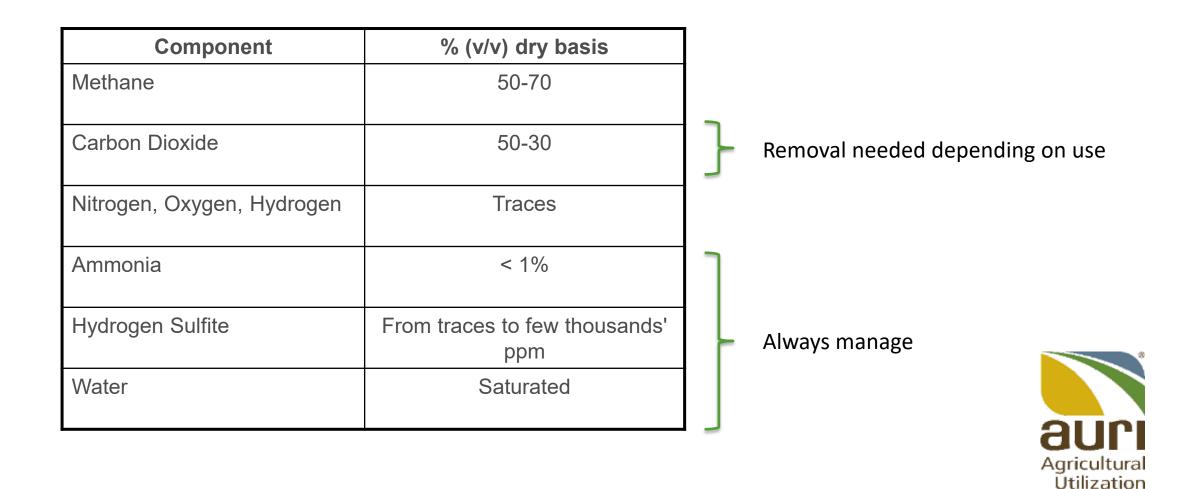
Luca Zullo, Ph.D. Sr. Director of Science and Technology, AURI



aur Agricultural Utilization Research Institute

Biogas conditioning and upgrade

Foster long-term economic benefit for Minnesota through value added agricultural products.


An anaerobic digestion project briefly

Source:EPA

Biogas Composition

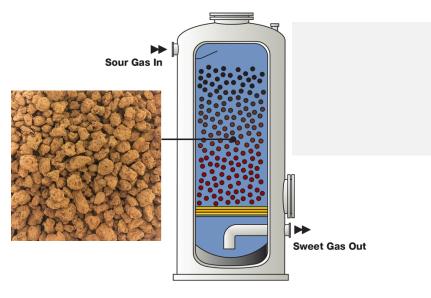
Research Institute

What is the gas used for?

- On-site use
 - No carbon dioxide separation
 - Sulfur removal extent depending on applications
 - Gas engines designed for biogas can tolerate up to 1000 ppm H₂S or higher with proper lubrication and metallurgy, typically around 200 to 300 ppm
 - Boilers require less than 500 ppm
 - Some microturbines tolerates up to 5000 ppm
- Pipeline injection
 - Typically, 97% or higher methane
 - -1% or less CO_2
 - No oxygen or nitrogen
 - 1-4 ppm sulfur or less

Water and ammonia removal

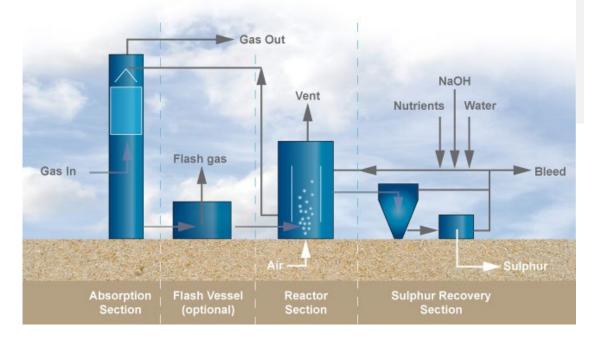
- A gas chiller suffices for most applications
 - Water with ammonia in the solution condenses
 - Some applications may require a secondary drying, typically flowing the gas through a desiccant bed


Sulfur removal technologies

	Efficiency	Capital Cost	Operating Cost	Complexity
Biological Fixation	Medium to High	Medium	Low	Medium to High
Air Injection	Medium	Low	Low	Low
Iron Chloride dosing	Medium	Low	Medium	Low
Water Scrubbing	High	High	Medium	High
Iron Sponges	High	Medium to Low	Medium to High	Low to Medium
Sodium Hydroxide Scrubbing	Very High	High	High	High

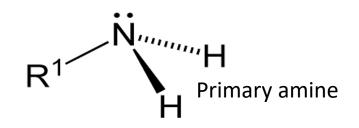
Sulfur removal – Iron or Carbon sponges

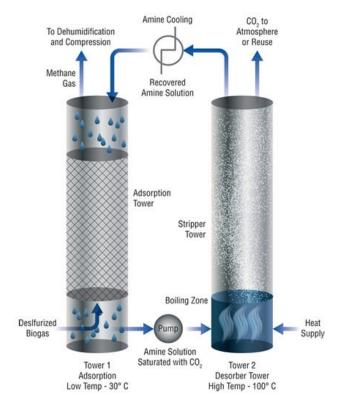
- Sulfur-laden gas flows through a bed of either
 - Iron oxide shavings
 - Activated carbon with alkaline or oxide solids
- Hydrogen sulfide reacts with the media, and elemental sulfur precipitates
- Beds need to be replaced regularly
- Low capital cost
- Relatively expensive chemical and maintenance costs due to frequent bed replacements
- Spent media are classified as toxic waste in some geographies



Sulfur removal – Biological Fixation

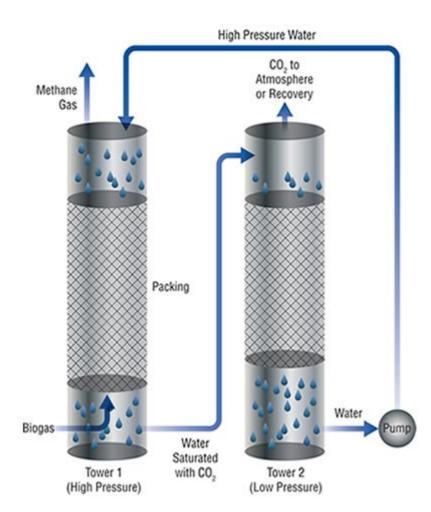
- Originally patented technology marketed as Thiopaq by Paques in the Netherlands
- Other vendors and
 implementation exist today
- H2S is scrubbed by water, and sulfides are oxidized to elemental sulfur by microorganisms
- A cake of elemental sulfur is recovered and disposed




CO2 removal

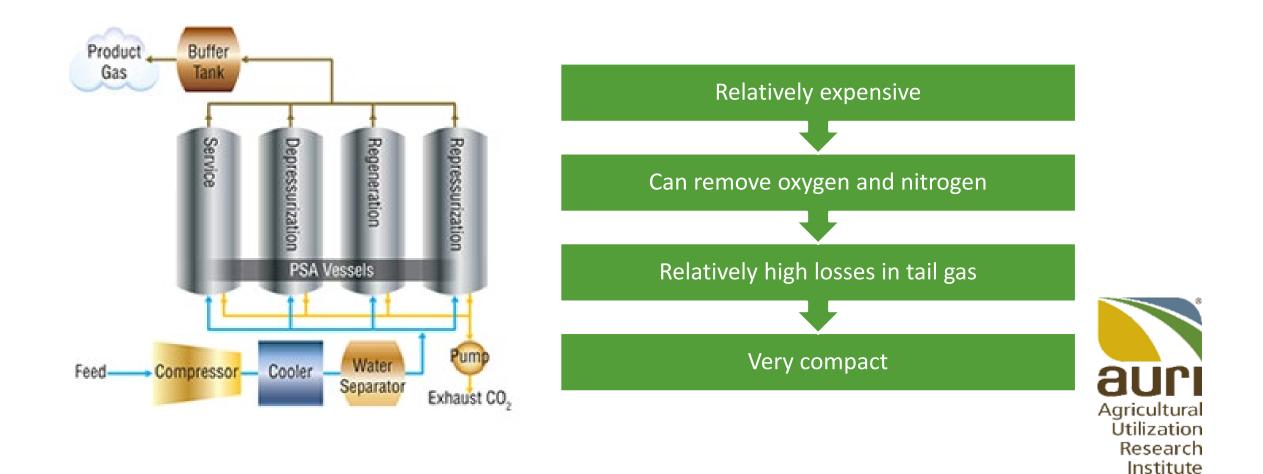
- Four major commercial technologies
 - Amine scrubbing
 - Water scrubbing
 - Pressure Swing Adsorption (PSA)
 - Membrane

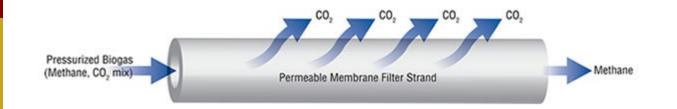
Amine Scrubbing



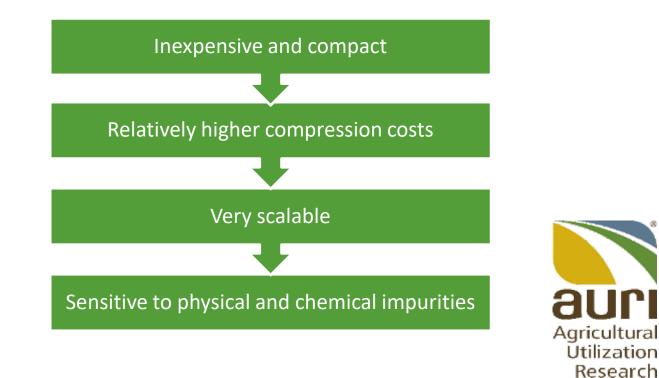
Source: Biocycle

Water scrubbing




Research

Institute


Pressure Swing Adsorption (PSA)

Membrane separation

Institute

Gas scrubbing at a glance

	Amine Scrubbing	Water Scrubbing	PSA	Membranes	
Type of process	Wet	Wet	Dry	Dry	
Operating pressure (psig)	0-3	150	150-200	180-250	
Temperature (F)	75-220	Ambient	Ambient	Ambient	
Off-gas treatment	No	Yes	Yes	Yes	
Desulfurization required	Yes	No	Yes	Yes	
Dry gas required	Yes	No	Yes	Yes	
Removes Oxygen and Nitrogen	No	No	Yes	No	
Heat demand	Yes	No	No	No	
Methane loss in tail gas	Negligible	<1%	~1%	<0.5-2.0%	
Electrical needs (kWh/m3 of CH4)	0.20	0.45	0.40-0.50	0.50-0.55	
Capital cost	\$\$\$	\$\$	\$\$\$\$	\$	
Operating costs	\$\$\$	\$\$	\$\$\$\$	\$\$	

Conclusion

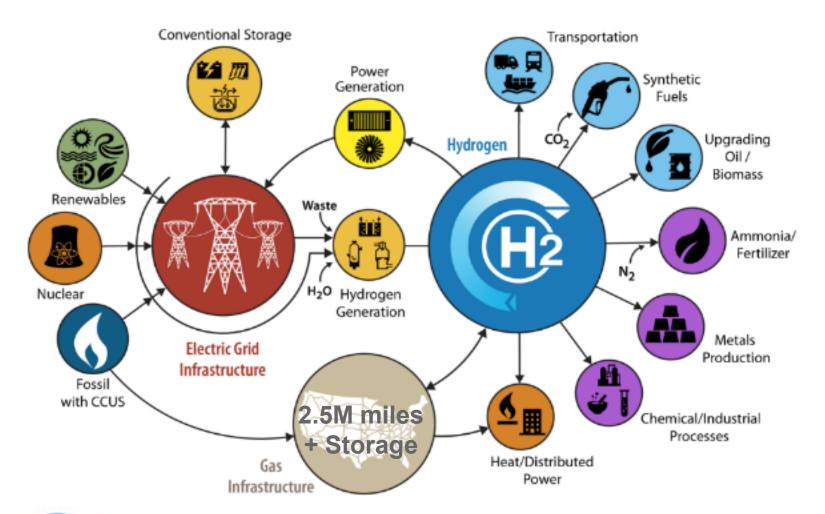
- Conditioning and upgrading biogas is relatively simple
- Plenty of robust commercial technologies exist with different economic and performance trade-offs
- Choosing the right process technology depends on project specifics such as project scale, gas quality, and intended gas use
- It is nonetheless an essential part of project economics which should not be overlooked at the early stages of planning and scope definition

Biogas Uses and Upgrades

Kevin Harrison, Ph.D. *Program Manager, V-Research, National Renewable Energy Lab*

Turning Waste Streams into Energy for Long-Duration Energy Storage and Decarbonization with Hydrogen

Nancy Dowe, Kevin Harrison, and Claire Victor December 1st, 2022 AURI's Minnesota Renewable Energy Roundtable Future Biogas Uses and Upgrades FarmAmerica Waseca, Minnesota

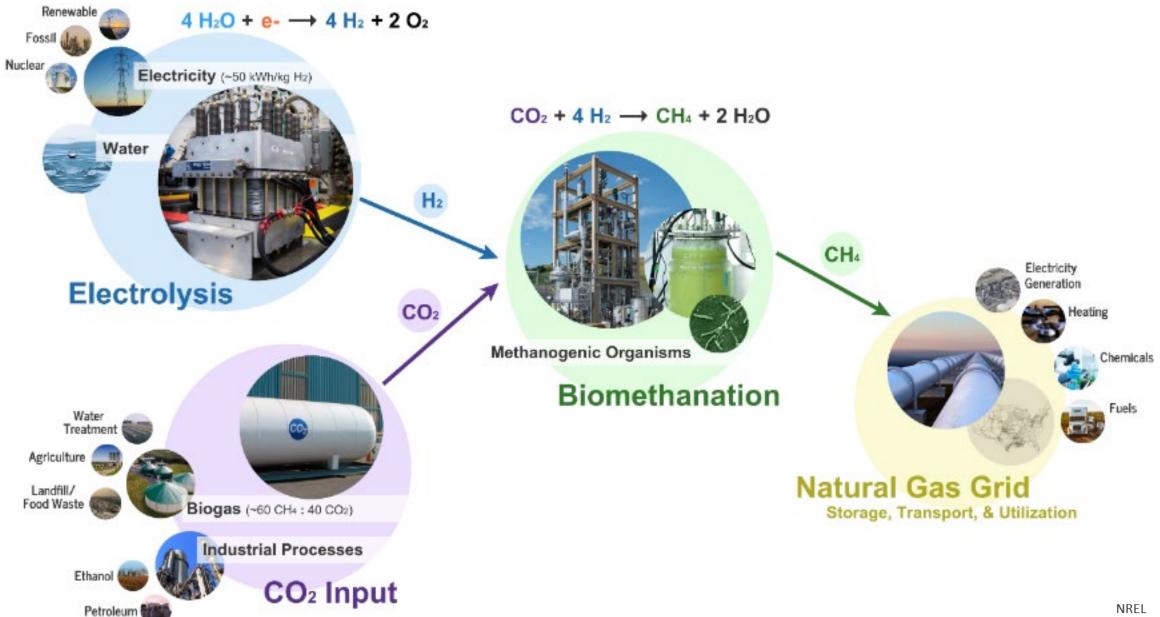

Transforming ENERG

Presentation Outline

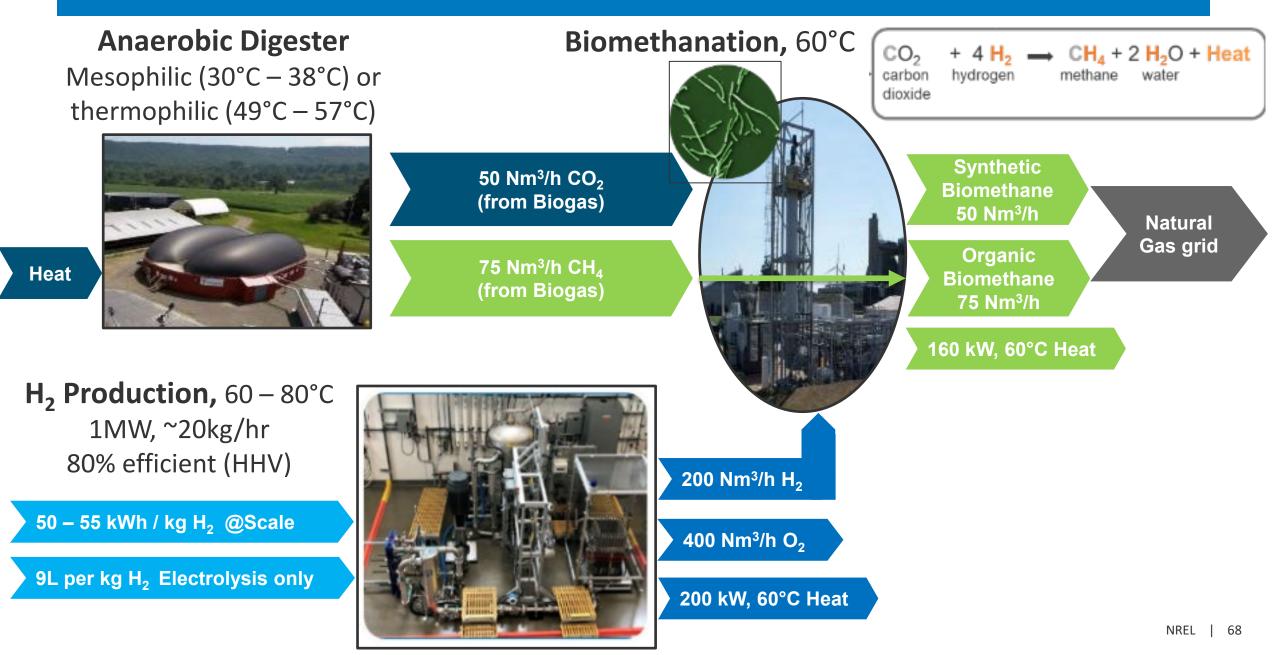
- Technology Descriptions
 - H₂ Production (Highlight H₂@Scale)
 - Biogas (Highlight Waste-to-Energy)
 - Biomethanation Biocatalysts
- Enablers
 - Need for Long-Duration Energy Storage
 - Low-cost Low-Carbon Electricity
 - Carbon Markets
- Market Potential
- NREL Capabilities

H₂@Scale Initiative

10 MM tons H₂ /year in U.S.


S Department of Energy

Benefits of Renewable H₂


- Enables higher penetration of renewable electricity
- Electrolyzer can provide grid services
- H₂ is used in many aspects of our energy system
- O₂ is a byproduct
- Growing transportation sector
- Reduces fossil fuel consumption
- Scalable, non-toxic, low temperature process

https://www.energy.gov/eere/fuelcells/h2scale

RNG PRODUCTION - TECHNOLOGY OVERVIEW

AD > H2 > Biomethanation

KEY ENABLERS

Low-cost, Low-carbon Electricity

Select renewable technologies (e.g., utility scale solar PV and wind) are cost-competitive with conventional generation technologies when considering unsubsidized levelized cost of electricity

Waste-to-Energy

2

Biomethanation via the 13,500+ potential biogas and other CO₂ sources can increase RNG production by ~70% over gas separation technologies (e.g., membranes, amine)

3 **Carbon Markets Federal** CA RFS **LCFS** D3 -250 CI Manure \$19.93/mmbtu \$61.98/mmbtu 0 CI \$15.54/mmbtu Food Waste -25 CI \$20.18/mmbtu D3 Wastewater \$19.93/mmbtu D3 45 CI Landfill \$19.93/mmbtu \$7.18/mmbtu

Examples of Federal and state carbon markets support RNG and other fuel production

Long-duration Energy Storage

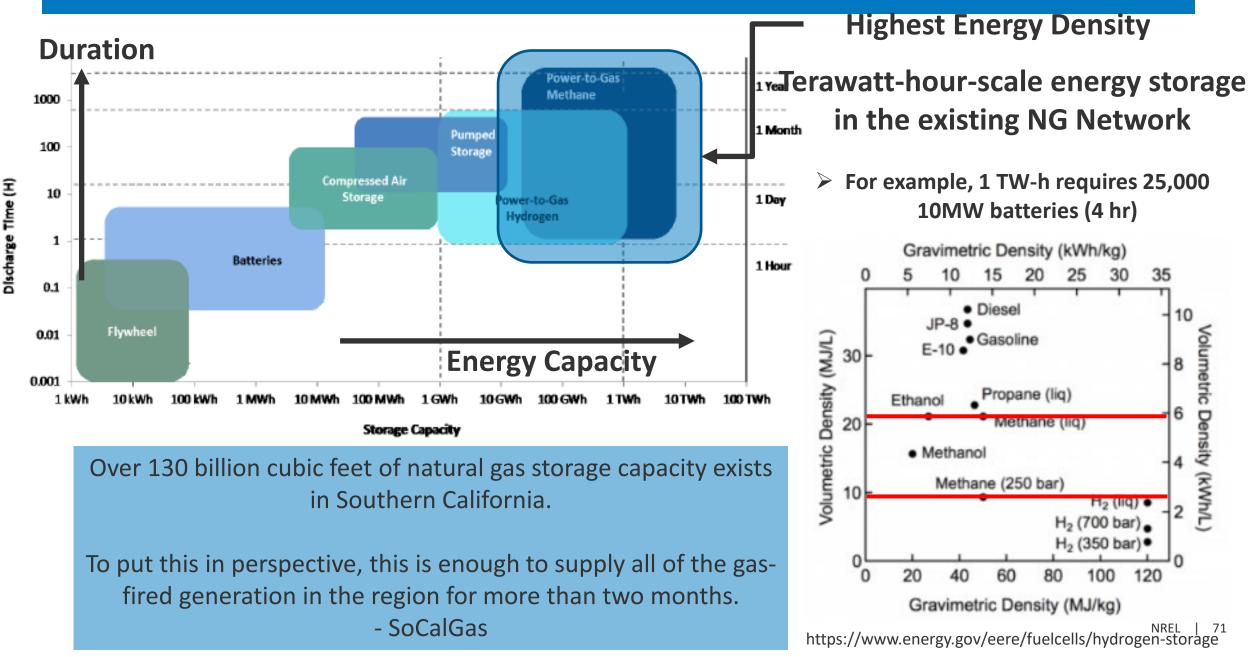
4



In addition to its high energy density, methane has high storage capacity for longduration energy storage

The U.S. NG Network alone has Terawatt-hour-scale energy storage capacity via underground geological and pipelines

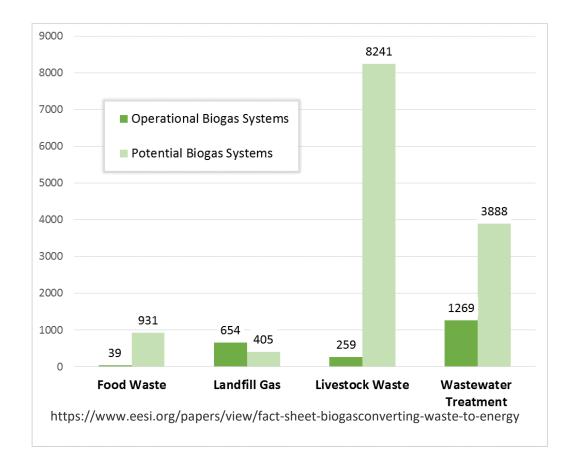
Key Enabler: LCOE (unsubsidized)


Selected renewable energy generation technologies are cost-competitive with conventional generation technologies under certain circumstances

(5) Represents the midpoint of the marginal cost of operating fully depreciated conventional facilities...

https://www.lazard.com/perspective/levelized-cost-of-energy-andlevelized-cost-of-storage-2020/ NREL

Energy Storage: Electrons to Molecules


Carbon Markets

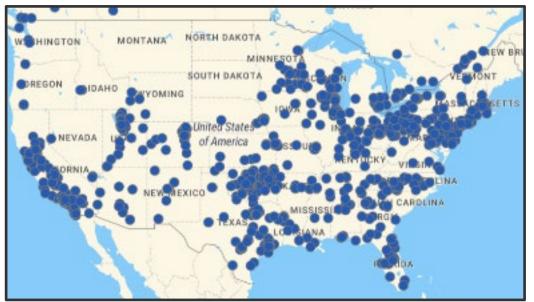
	Natural Gas Value (Physical)	Voluntary Corporate (EA)	Pre- Compliance (EA)	Compliance RFS \$1.70/D3 RIN \$0.75/D5 RIN	Compliance LCFS \$195/LCFS
DAIRY/SWINE MANURE \$84/mmbtu	\$1.50-\$2.00/ mmbtu	N/A	N/A	D3 \$19.93/mmbtu	-250 Cl \$61.98/mmbtu
FOOD WASTE \$9-20/mmbtu Tip Fees!	\$1.50-\$2.00/ mmbtu	\$8-11/mmbtu	\$8-11/mmbtu	D5- N/A \$ 8.79/mmbtu	0 CI \$15.54/mmbtu -25 CI \$20.18/mmbtu
WASTEWATER	\$1.50-\$2.00/	\$8-11/mmbtu	\$8-11/mmbtu	D3 \$19.93/mmbtu	30 CI \$9.96/CI
TREATMENT \$31/mmbtu	mmbtu	\$8-11/mmbtu	\$8-11/mmbtu	D5- N/A	N/A
LANDFILL GAS \$28/mmbtu	\$1.50-\$2.00/ mmbtu	\$8-11/mmbtu	N/A	D3 \$19.93/mmbtu	45 CI \$7.18/CI
Vbluesource					

NOT ALL RNG IS CREATED EQUAL

https://www.bluesource.com/services/procure-renewable-energy/

Biogas: Market Potential & Anaerobic Digestors

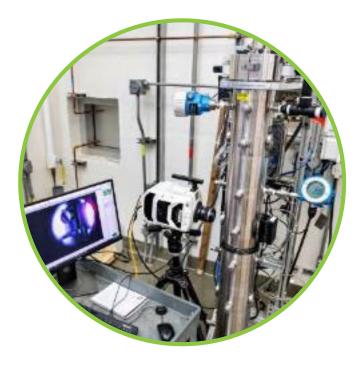
https://www.vanguardrenewables.com/one-gas-identifies-175bcf-of-renewable-natural-gas-resources-lines-up-projects/


Biogas: Waste-to-Energy

2,200 Operational Biogas Systems

- 157 RNG production facilities (13,500 potential)
 - Using gas separation technologies
 - 59M MMBTU/y
 - 530M GGE/y
 - 109 have pipeline injection

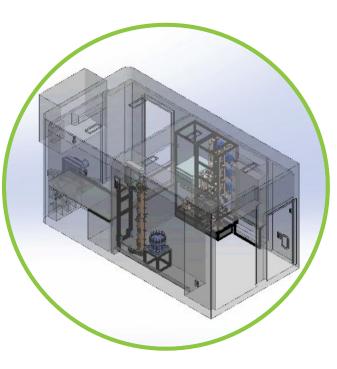
https://www.rngcoalition.com/rng-production-facilities


https://afdc.energy.gov/stations/#/find/nearest?fuel=CNG

- 863 CNG & 55 LNG Fueling Stations
- +80 additional in planning
- 175,000 vehicles in the U.S.

RNG produced by recycling CO_2 with renewable H_2 can impact medium- and heavyduty transportation, today...

Biomethanation would increase RNG
 production by 60 – 70%
 NREL | 74


CURRENT PROJECTS

EL/Bioreactor Integration

SoCalGas, BETO, HFTO, & University of Chicago

Close-coupling of electrolyzer and bioreactor to advance IP, advancing water management techniques, and improving hydrogen mass transfer with advanced gas mixing

Biopower

BETO, Electrochaea, & SoCalGas

Producing pipeline quality RNG from Biomethanation via 20L bioreactor on a mobile RD&D platform and collaborating with ANL to investigate CI from dairies with TEA/LCA

Peaks Renewables

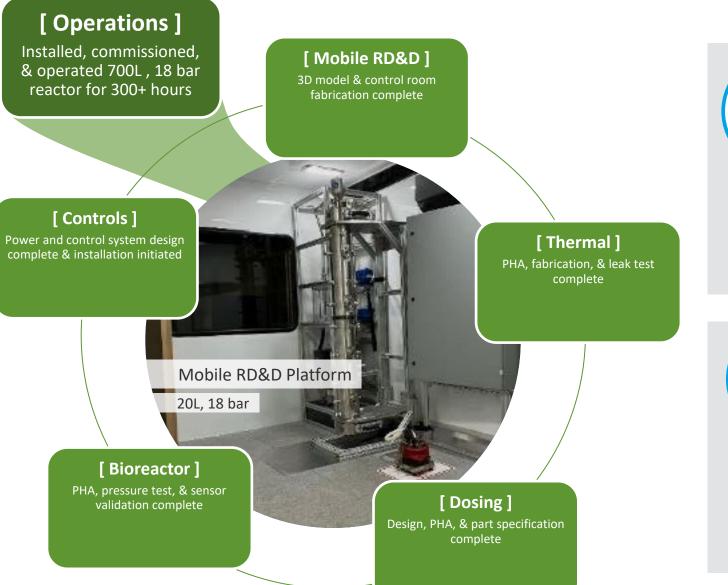
BETO, SoCalGas, Electrochaea, Plug, & CDM Smith

Summit Utilities/Peaks Renewables to successfully deploy biomethanation at a diary digester, integration with renewable electricity & hydrogen production

NREL R&D Capabilities – Make, Store & Use

Electrolyzer Capability

- 1 MW AC/DC power
 0 4000 A at 250 V
- 750 kW PEM stack —
 ~13 kg H₂ / hr
- 30 bar H₂ Pressure
 O Up to 70 bar max


H₂ and RNG R&D Site

- #1) 350 and 700 bar pre-cooled H_2 dispensing (LD, HD)
- #2) Diaphragm and piston compressors
- #3) 700L bioreactor 18 bar (260 psig) 60°C
- #4) 200, 400 & 900 bar storage 625 kg Total

RESULTS

2021 Patent Applications

Application No. 17/261,473

Improving capital and operating costs of the electrolyzer

- 5-10% EL capital cost reduction
- 3-5% EL system efficiency improvement
- Advancement of operational safety via elimination of dissolved H₂ at EL anode

Application No. 17/397,665

Using stack current for H₂ mass flow and gas ratio control

- Enhancement of mixed gas ratio control
- Improvement of H₂ mass transfer
- Elimination of H₂ mass flowmeter and flow control valve

P2G/E2M - OPPORTUNITIES

Start with Electrons

Renewable electrolysis requires low-cost lowcarbon electricity; start with small PV & wind

Integration & Flexibility

Focus on systems integration to demonstrate the versatility of electrons-to-molecules; starting with dispatchable electrolysis which will enable more renewable electricity

Pilot Demonstrations

Partnerships to demonstrate near-commercial viability for low-carbon hydrogen production with low-carbon (off-grid) electrons

Analysis & Data

Identify and focus on end-use case studies that can start to make an impact in the near-term (< 5 yrs)

Education & Outreach

Partnerships between industry, academia, and government to enhance learning-by-doing. Small systems run safely

Contact Information

Nancy Dowe (Biomethanation)

Senior Scientist - Microbiology National Renewable Energy Laboratory (720) 227-2009 Nancy.Dowe@nrel.gov

Kevin Harrison (Hydrogen Systems) Senior Engineer National Renewable Energy Laboratory (303) 815-3721 Kevin.Harrison@nrel.gov

Thank You

www.nrel.gov

Audience Q & A

Agricultural Utilization Research Institute

Thank you to our sponsors!

Agricultural Utilization Research Institute

Closing

Shannon Schlecht Executive Director, AURI

Thank You

Learn more at auri.org

Agricultural Utilization Research Institute